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In this note, we prove a geometrical relationship between the zeros of a polyno­
mial p of order m, say, and the zeros of another polynomial which is derived from
p by multiplying each of p's coefficients, call them {lXk};;'~O' by a power of k or by
k2 + 2k)' for ). > O. © 1991 Academic Press, Inc.

The Gauss-Lucas Theorem (see, for instance, [1]) states that the zeros
of the derivative of a polynomial have to lie in the convex hull of the zeros
of the polynomial itself. In this note we establish a similar relationship
between the zeros of a polynomial p of degree m which is expressed as a
linear combination of certain basis polynomials ({Jk' with ({Jk of degree k,
k = 0, 1, ..., m, that span the space of all polynomials of degree m, and the
zeros of a polynomial q which is obtained from p by multiplying the
coefficient of ({Jk by k2 for all k, or by k2 + 2H for positive ), for all k.

When the basis functions are the Chebyshev polynomials, a result, which
is also useful for relating the zeros of the second derivative of an even
trigonometric polynomial to the zeros of the polynomial itself, is the
following.
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THEOREM 1. Let p = 2:.7:=0 r:t.k Tk be a polynomial, written in the
Chebyshev basis, and let q = 2:.7:~o r:t.kk 2 Tk. Then, i/O, 1, or -1, is a zero of
q, it has to lie in the convex hull f!J' of the zeros of p', and therefore in the
convex hull f!I> of the zeros of p. If Xo¢ {a, 1, -1} is a zero of q, it has to
lie in the convex hull of f!I>' u {x; 1 }, and therefore in the convex hull of
f!l>u {X;l}.

Remark 1. In many cases, the requirement that Xo be in the convex
hull of f!J' u {X;l} already means that Xo has to be in f!I>', e.g., if

(i) x;lEf!I>', or

(ii) the line segment connecting X o and x; 1 intersects f!J', or

(iii) the line through Xo and X;l does not intersect f!J', or

(iv) the ray from Xo through X;l intersects f!I>'.

Proof We note first that by the Gauss-Lucas Theorem f!I>' c f!J. (This
fact has already been used twice in the statement of the theorem.) Now, by
the differential equation

which is satisfied by the Chebyshev polynomials, it is true that

m m m

L r:t.kk 2 Tk(x)=(x2 -1) I r:t.kTk(X)+X I r:t.kT~(x),
k~O k~O k~O

and we therefore have

q(x) = (x 2 -1) p"(x) +xp'(x). (1)

Suppose that xo=O is a zero of q. Then, by (1), p"(xo) =0, whence °is in
the convex hull of the zeros of pIt, and therefore it is in f!J', by the
Gauss-Lucas Theorem, as required. Suppose that Xo = 1 or Xo= -1 is a
zero of q. Then, again by (1), p'(xo) = 0, which implies X o E f!J'. In all other
cases, q(xo) = °implies

p"(xo) X o--=--
p'(XO) 1- x~'

(2)

where we assume that Xo is not already a zero of p', because in that case
the result follows immediately. We can rewrite (2) as

m-l 1 X oI --=--2'
j~l XO-Xj 1-xO
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where {Xi 11 ~} ~ m -I} are the zeros of pi (multiple zeros being counted
multiply). Hence,

and therefore

1 X01-XO

Ixo-xOl I2
'

I XO-Xj 2 0,
j~l Ixo-xjl

where we let X m :=X0
1

. Now let us define

for all 1~} ~ m. Then (3) implies

m

Xo = I JijXj ,
j~l

where

m

(3 )

and for all}.

Expressions (4) and (5) imply the theorem. I

Remark 2. The assertion of the theorem remains true if we replace
Chebyshev polynomials by any ultraspherical polynomials pr'), where q
now becomes q = LZ'~o akk(k + 2A) P)j-) and where A is a positive constant.

COROLLARY. Let p and q be as in the statement of the theorem or of
Remark 2. Then the following statements are valid:

(i) If all the roots of p are real, so are the roots of q.

(ii) If all the roots ofp are in the upper (lower) half-plane, then so are
the roots of q.

(iii) If all the roots of p are inside a closed disk r:2 about the origin of
radius r;:?: 1, so are the roots of q.

Proof We prove (i): If the roots of p are real, then fJ' is a subset of
the real line. Suppose q(xo) = O. If Xo is real, we are done. Otherwise Xo1

lies in the other half-plane than Xo, i.e., the imaginary parts of Xo and Xo1

have opposite signs, thus contradicting the theorem. The second claim is
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established in a similar way as is the first one. We prove the last claim.
Suppose Xo is a root of q. If it is inside the closed disk {lfi, there is nothing
to prove. Otherwise, X o1 will be inside {lfi, and so Xo cannot be in the
convex hull of fYJ' u {xoI}, thus contradicting the assertion of our theorem.
The corollary is proved. I

In case p is expressed as a linear combination of monomials, which can
be considered as the limiting case of the one studied in Remark 2 for
A. --+ 00, we have the following result.

THEOREM 2. Let p(x) = L;~o rt.kXk and qn(x) = L;~o rt.kknxk for a
positive integer n. Then all zeros of qn lie in the convex hull of fYJ' u {O}.

Proof We argue inductively, using the simple identity

(6)

which is true for positive n. For n = 1, the assertion of the theorem follows
directly from (6) because qo = P and therefore q~ = p'. If the assertion is
true for qn-l' then (6) and the Gauss-Lucas theorem imply that it also
holds for qn' The theorem is proved. I
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